
 1

Chapter One: Digital Systems and Binary Numbers

Introduction:

 A digital system is a combination of devices {mechanical, electrical, photo

electronic,…,etc.} arranged to perform certain functions in which quantities are

represented digitally.

 Digital systems are used in communication, business transactions, traffic control,

spacecraft guidance, medical treatment, weather monitoring, the Internet, and many

other commercial, industrial, and scientific enterprises.

Number Systems and Number‐Base Conversions:

1. Decimal Number Systems

It is said to be of base (10) since it uses 10 digits {0, 1, 2, 3, ……, 9}.

Ex. 1: [7392]10 = 3210 107103109102 = 7392.

Ex. 2: [0.421]10 = 3210 101102104100 = 0.421.

For any numbers:
m

m

n

n

n

nmnn NaNaNaNaNaNaNaaaaaaaa

2

2

1

1

1

1

1

1

0

021011

Where; N is the base of the system.

2. Binary Number Systems

It is said to be of base (2) since it uses 2 digits {0, 1}.

Binary to Decimal Conversion

Ex. : [11010.11]2 = 2143210 21212121202120 =(26.75)10.

To convert r – base number system to decimal number:
3

3

2

2

1

1

2

2

1

1

0

0321012 .

 rarararararaaaaaaa

In General

In General

 2

Ex. : [4021.2]5 = 13210 5254505251 =(511.4)10.

Decimal to Binary Conversion

Ex. 1: Convert the decimal number [41] to binary number

The arithmetic process can be manipulated more conveniently as follows:

 Integer Remainder

 41÷ 2

 20 ÷ 2 1

 10 ÷ 2 0

 5 ÷ 2 0

 2 ÷ 2 1

 1 0

 1

(101001)2 = answer

So, [41]10 = (101001)2

Ex. 2: Convert the decimal number [27.15] to binary number

The arithmetic process can be manipulated more conveniently as follows:

 Integer Remainder

 27÷ 2

 13 ÷ 2 1

 6 ÷ 2 1

 3 ÷ 2 0

 1 1

 1

(11011)2 = answer

[27]10 = (11011)2

 Fraction Coefficient

 0.15×2= 0.3 0

 0.3 × 2=0.6 0

 0.6 × 2=1.2 1

 1.2 × 2=0.4 0

 0.4 × 2=0.8 0

 0.8 × 2=1.6 1

 1.6 × 2=1.2 1

 3

(0.0010011)2 = answer

[0.15]10 = (0.0010011)2

So, [27.15]10 = (11011.0010011)2

Note: Conversion from decimal integers to any base‐r system is similar to this example,

except that division is done by r instead of 2.

Ex. : Convert the decimal number [22.5] to 4 base number system

The arithmetic process can be manipulated more conveniently as follows:

 Integer Remainder

 22÷ 4

 5 ÷ 4 2

 1 1

 1

(112)4 = answer

[22]10 = (112)4

 Fraction Coefficient

 0.5×4= 2.0 2

 2.0 × 4=0.0 0

(0.20)4 = answer

[0.5]10 = (0.2)4

So, [22.5]10 = (112.2)4

H.W: Convert the following numbers:

1. (645.34)10 ()2

2. (153.531)10 ()6

3. (11101.1101)2 ()10

 4

3. Octal Number Systems

It is said to be of base (8) since it uses 8 digits {0, 1, 2,…..,7}.

Ex. 1: [231]8 = 210 828381 = (153)10.

Ex. 2: Convert the decimal number [245.5] to octal number system

The arithmetic process can be manipulated more conveniently as follows:

 Integer Remainder

 245÷ 8

 30 ÷ 8 5

 3 6

 3

(365)8 = answer

[245]10 = (365)8

 Fraction Coefficient

 0.5×8= 4.0 4

 4.0 × 8=0.0 0

(0.40)8 = answer

[0.5]10 = (0.4)4

So, [245.5]10 = (365.4)8

4. Hexadecimal Number Systems

It is said to be of base (16) since it uses 16 digits {0, 1, 2,…..,9, A, B, C, D, E, F}.

Ex. 1 : [2C.4A]16 = 2110 16101641621612 = (44.2)10.

Ex. 2 : Convert the decimal number [165.25] to hexadecimal number system

The arithmetic process can be manipulated more conveniently as follows:

 Integer Remainder

 165÷ 16

 (10) A 5

 A

(A5)16 = answer

[165]10 = (A5)16

 5

 Fraction Coefficient

 0.25×16= 4.0 4

 4.0 × 16=0.0 0

(0.40)16 = answer

[0.25]10 = (0.4)16

So, [165.25]10 = (A5.4)16

H.W 1: Convert the following numbers:

1. (33.22)4 ()8

2. (BA.C)16 ()7

H.W 2: In base [13], list the numbers between (4 and 40).

Conversion between Binary & Octal systems
 The conversion between Binary and Octal is accomplished by partitioning the binary

number into groups of three digits.

Ex. 1: Convert the octal number [63.4] to binary number system

(63.4)8 = (110011.100)2

Ex. 2: Convert the binary number (1011011.11011) to octal system

(001011011.110110)2 = (133.66)8

Octal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

 6

Conversion between Binary & Hexadecimal systems

 The conversion between Binary and Hexadecimal is accomplished by partitioning the

binary number into groups of four digits.

Ex. 1: Convert the Hexadecimal number [F67.19] to binary number system

(F67.19)16 = (111101100111.00011001)2

Ex. 2: Convert the binary number (10100111011.0110101) to hexadecimal system

(010100111011.01101010)2 = (53B.6A)16

H.W: Convert the following numbers:

1. (11011.1001)2 ()8

2. (DF3.C5)16 ()2

Arithmetic operations
Binary Arithmetic
1) Addition operation

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0; and carry 1 to the next column.

 Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

 7

Ex. : Add; (1011.01 + 101.101)2

1011.010 +

0101.101

(10000.111)2

2) Subtraction operation

0 – 0 = 0

0 – 1 = 1; and barrow 1 from the next column.

1 – 0 = 1

1 – 1 = 0

Ex. : Subtract; (1000.01 – 11.001)2

1000.010 –

0011.001

(101.001)2

3) Multiplication operation

0 × 0 = 0

0 × 1 = 0

1 × 0 = 0

1 × 1 = 1

Ex. : Multiply; (11.01 × 1.01)2

1101 ×

 101

 1101 +

 00000

110100

(100.0001)2

4) Devision operation

0 ÷ 0 = undefined

1 ÷ 0 = undefined

0 ÷ 1 = 0

1 ÷ 1 = 1

 8

Ex. : Divide; (1101.01 ÷ 10)2

So, 1101.01 ÷ 10 = (110.101)2

R – Base Arithmetic
Ex. : Evaluate the following:

1. (42.51 + 15.3)8 & (42.51 – 15.3)8

42.51 42.51

 + –

15.30 15.30

(60.01)8 (25.21)8

2. (B3 + 4D)16 & (B3 – 4D)16

B3 B3

 + –

4D 4D

(100)16 (66)16

H.W: Perform the following operations

1. (50.27)9 ÷ (15.28)9

2. (44.56)7 + (12.5)6

3. (B3)13 – (6.55)13

4. (33.24)5 × (14.21)5

10 110101

10 -

110.101

 10

 10 -

 0 10

 10 -

 0 10

 10 -

00

 9

Complements of Numbers

 In digital systems, the complements are used to simplify the subtraction operation.

There are two types of complements for r – base system:

 r 's complement.

 (r – 1)'s complement.

In binary system, there are 2's complement and 1's complement which represent the

negative form of binary number.

1. The first complement (1's) are changed zeros to ones and ones to zeros.

Ex. : (01001.1101)2 (10110.0010)2

2. The second complement (2's) can be either leaving least significant zeros and

ones digit unchanged then replacing 1's to 0's and 0's to 1's; or by forming 1's

complement and adding {1} for the least significant bit.

Ex. : (110101)2 ()2's

(110101)2 (001010)1's + 1= (001011)2's

Subtraction using Complements

 In digital computer, if the subtraction implemented, we use the complements and

addition as shown:
1) Convert the second number using 1's or 2's complement.

2) Replace the subtraction operation to addition operation.

Ex. 1: Perform the following operation using 2's complement.

(1010100)2 – (1000100)2

(1000100)2 (0111011)1's +1 = (0111100)2's

1010100

 +

0111100

1 0010000 ….. (0010000)2

1's

2's

1's

1's

Ignored

 10

Ex. 2: Perform the following operation using 2's complement.

(1010011.01)2 – (0101100.10)2

(0101100.10)2 (1010011.01)1's +1 =(1010011.10)2's

1010011.01

 +

1010011.10

1 0100110.11 ….. (0100110.11)2

Ex. 3: Perform the following operation using 1's complement.

(1010111)2 – (0110110)2

(0110110)2 (1001001)1's

1010111

 +

1001001

1 0100000

 1 +

(100001)2

Ex. 4: Find the 12's complement and 13's complement to the number [B65.5C]13.

CCC.CC

 –

B65.5C

 (167.70)12's + 1 = (167.71)13's

1's

Ignored

1's

 11

Binary Logic Gates

1. AND Gate:

 A B Z

 0 0 0

 0 1 0

 1 0 0

 1 1 1

Z = A . B

2. OR Gate:

 A B Z

 0 0 0

 0 1 1

 1 0 1

 1 1 1

Z = A + B

3. NOT Gate:

 x y

 0 1

 1 0

y = x

AND Gate Truth Table

OR Gate Truth Table

NOT Gate Truth Table

 12

4. NAND Gate:

 x y Z

 0 0 1

 0 1 1

 1 0 1

 1 1 0

z = x . y

5. NOR Gate:

 x y z

 0 0 1

 0 1 0

 1 0 0

 1 1 0

z = x + y

6. Exclusive OR (Ex – OR) Gate:

 x Y z

 0 0 0

 0 1 1

 1 0 1

 1 1 0

z = x'y +xy' = x y

NAND Gate Truth Table

NOR Gate Truth Table

Ex - OR Gate Truth Table

 13

7. Exclusive NOR (Ex – NOR) Gate:

 A B Y

 0 0 1

 0 1 0

 1 0 0

 1 1 1

Y = AB +A'B' = AB

Ex - NOR Gate Truth Table

 14

Chapter TWO: BOOLEAN ALGEBRA

BASIC DEFINITIONS

 Boolean algebra, like any other mathematical system, may be defined with a

set of elements, a set of operators, and a number of unproved axioms or

postulates. A set of elements is any collection of objects, usually having a

common property. If S is a set, and x and y are certain objects, then the notation x

 S means that x is a member of the set S and y S means that y is not an

element of S.

 A binary operator defined on a set S of elements is a rule that assigns, to each

pair of elements from S, a unique element from S. As an example, consider the

relation a *b = c. We say that * is a binary operator if it specifies a rule for

finding c from the pair (a, b) and also if a, b, c S. However, * is not a binary

operator if a, b S, and if c S.

 Boolean algebra can be used to help analyze a logic circuit and express its

operation mathematically. There are four assumptions which are:

1. 0.0 = 0

 0.1 = 0

 1.0 = 0

 1.1 = 1

2. 0+0 = 0

 0+1 = 1

 1+0 = 1

 1+1 = 1

3. 0' = 1

 1' = 0

4. If x = 1 then x ≠ 0

 If x = 0 then x ≠ 1

Rules of Boolean Algebra

The basic thermoses and laws of Boolean Algebra:

1) Commutative Law

A . B = B .A

A + B = B +A

2) Associative Law

A . (B . C) = (A . B) . C

 15

A + (B + C) = (A + B) + C

3) Distribution Law

A . (B + C) = (A . B) + (A . C)

A + (B . C) = (A + B) . (A + C)

4) A + 0 = A

 A + 1 = 1

 A . 0 = 0

 A . 1 = A

5) A + A = A

 A + A' = 1

 A . A = A

 A . A' = 0

6) Inversion Law

A'' = A

7) A + (A . B) = A

 Proof :A (1+ B) = A . 1 = A

A + (A' . B) = A + B

 Proof : (A+ A') . (A + B) = A + B

8) DE Morgan's Theorem

A) A . B = A' + B'

Proof :

A B A . B (A . B)'

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

 A . B . C . D . …. = A' + B' + C' + D' + …….

A B A' B' A'+B'

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

1

1

In General

 16

B) A + B = A' . B'

Proof :

A B A + B (A + B)'

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

 A + B + C + D . …. = A' . B' . C' . D' . …….

Ex. : Prove that:

1. a'b + b'c + ac' = ab' + bc' + a'c

The left side:

= a'b(c + c') + (a + a')b'c + a(b + b')c'

= a'bc +a'bc' + ab'c + a'b'c + abc' + ab'c'

= ab'(c + c') + bc' (a + a') + a'c (b + b')

= ab' + bc' + a'c = The right side.

2. (x y) z = x (y z)

The left side:

= (xy' + x'y)z' + (xy' + x'y)'z

= xy'z' +x'yz' + ((x' + y).(x + y'))z

= xy'z' + x'yz' + (xx' + x'y' + xy + yy')z

= xy'z '+ x'yz' + x'y' z + xyz

= x(y'z' +yz) + x'(yz' +y'z)

= x (y z)' + x' (y z)

= x (y z) = The right side.

A B A' B' A'.B'

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0

In General

1 1 1

0

0

 17

H.W 1: Simplify the following functions:

1. F1 = AB'C + BC'D + ACD + BCD

2. F2 = y + x'y'z + xzw' + xz'

H.W 2: Prove that:

 ABC' + A'BC + ABC = B (A + C).

Canonical and Standard Forms

 The logic function can be expressed by two standard form:

1. Sum of Products (SoP) : It is possible to implement the logic functions in

sum of products method depending on the output, it the output equals logic 1.

F = 1.

2. Product of Sums (PoS): It is possible to implement the logic functions in

product of sums method depending on the output, it the output equals logic 0.

F = 0.

Ex. 1: Find the canonical forms in SoP and PoS for the following function:

F(x,y,z) = xy + x'y' + z'

= xy(z + z') + x'y'(z + z') + (x + x')(y + y')z'

= xyz + xyz' + x'y'z + x'y'z' + (xy + xy' + x'y + x'y')z'

= xyz + xyz' + x'y'z + x'y'z' + xyz' + xy'z' + x'yz'

= xyz + xyz' + x'y'z + x'y'z' + xy'z' + x'yz'

F (SoP) =)7,6,4,2,1,0(

F (PoS) =)5,3(

Ex. 2: Find the canonical forms in SoP and PoS for the following function:

F = (A + B')(A + B + C')

= (A + B' + CC')(A + B + C')

= (A + B' + C)(A + B' + C')(A + B + C')

F (PoS) =)3,2,1(

F (SoP) =)7,6,5,4,0(

H.W : Convert the following logic function to SoP & PoS:

1. F = (x + y'z'w')(x'y' + y (z' + w))

2. F = (A + B)'AB

 18

Chapter Three: gate Level minimization

The Karnough Map Method

 Karnough Map (K – M) is used to simplify the logic functions to reduce the Boolean

functions with the aid of number of rules. Karnough Maps consist of 2
n
 cell depending

on the (n) variables of the logic functions.

1) 2 – variables Karnough Map:

n = 2 no. of cells = 2
n
 = 2

2
= 4

For F(A, B)

Or

Ex. : Using K – M to simplify the function :

F =)3,1(

F = A

2) 3 – variables Karnough Map:

n = 3 no. of cells = 2
n
 = 2

3
= 8

For F(A, B, C)

A

B

0 1

3 2

 0 1

0

1
AB

00 01

 1

 10

 2 3

 11

 0

A

B

0 1

3 2

 0 1

0

1 1

 1

 2 6 4 0

AB
00 01 11 10

 1 3 5 7

 C

 0

 1

 19

Or

Ex. : Using K – M to simplify the function :

F =)6,4,1;0(

F = (A + B)(A' + C)

3) 4 – variables Karnough Map:

n = 4 no. of cells = 2
n
 = 2

4
= 16

For F(A, B, C, D)

Ex. : Using K – M to simplify the function :

F =)15,13,10,8,7,5,2,0(

A

B

0 4

5 1

 0 1

00

01

 11
 3

 10
 2

 7

 6

 2 6 4 0

AB
00 01 11 10

 1 3 5 7

 C

 0

 1

 0

 0

 0 0

 4 12 8 0

AB
00 01 11 10

 1 5 9 13

CD

00

 01

 11

 10

 3

 2

 7

 6

 11

 10

15

14

 20

F = B'D' + BD = (B D)'

4) 5 – variables Karnough Map:

n = 5 no. of cells = 2
n
 = 2

5
= 32

For F(A, B, C, D, E)

Ex. : Using K – M to simplify the function :

F =)31,30,29,25,23,22,17,15,14,13,9,7,6,2,1(

1

1 1 1 1

1 1 1 1

1 1 1 1

 1 1

 4 12 8 0

AB
00 01 11 10

 1 5 9 13

CD

00

 01

 11

 10

 3

 2

 7

 6

 11

 10

15

14

1

1

1

1

1

1

1 1

 8 24 16 0

AB
00 01 11 10

 2 10

10

 18

18

26

CD

00

 01

 11

 10

 6

 4

 14

14 12

 22

 20

30

28

 9 25 17 1

AB
00 01 11 10

 3 19 27

CD

00

 01

 11

 10

 7

 5

 15

13

 23

 21

31

29

E'

E

 11

 8 24 16 0

AB 00 01 11 10

 2 10

10

 18

18

26

CD

00

 01

 11

 10

 6

 4

 14

14 12

 22

 20

30

28

 9 25 17 1

AB 00 01 11 10

 3 19 27

CD

00

 01

 11

 10

 7

 5 13

 23

 21

31

29

E'

E

 11

 21

F = CD + C'D'E + BCE + A'B'DE'

H.W : Simplify the following logic functions using K - Maps:

1. F = A'B'C +ABC'D' + AD' + C

2. F =)14,10,8,5,2,1(

Don’t‐Care Terms

 The don't care terms will referred to the combination of variables will never occur. The

don't care terms can be expressed by many symbols such as [ᶲ, X, D]. When the don't

care terms are appeared in the karnough maps, the resulting expression will be

simplified.

Ex. 1: Simplify the following expression:

F = A'B'C' +A'B'CD' + AB'D +)''(DABABC

= A'B'C'(D + D') +A'B'CD' + AB'(C + C')D +)')'(')'((DCCABDDABC

 = A'B'C'D + A'B'C'D' +A'B'CD' + AB'CD + AB'C'D +

)''''''(DCABCDABABCDABCD

F=)15,14,10,8()11,9,2,1,0(

F = AB' + B'D' + A'B'C'

Ex. 2: Simplify the following function:

F=)15,14,13,12,11,10()9,8,7,6,5(

F = A + BC + BD

1 X

1 1

 1

1 X

 X 1

 1 X 1

 1 X X

 1 X X

 4 12 8 0

AB
00 01 11 10

 1 5 9 13

CD

00

 3

 2

 7

 6

 11 15

14

 01

 11

 10

 4 12 8 0

AB
00 01 11 10

 1 5 9 13

CD

00

 3

 2

 7

 6

 11 15

14

 01

 11

 10 10

 10

 22

H.W : Simplify the following logic functions:

1. F1 = x'y'z' +x'y'z' + xy'z'w + D(x'yzw' + xyw')

2. F2 =)15,7,2,0()14,11,10,9,5,4,1(D

NAND and NOR Implementation

 NAND Gate and NOR Gate only can be used to implement the Boolean functions:

1) NAND Gate only:

Ex. : Simplify the following function using NAND Gate only:

F = AB' + B'C' + B'D'

F = AB' + B'C' + B'D'

F = (AB') . (B'C') . B'D'

2) N0R Gate only:

Ex. : Simplify the following function using NOR Gate only:

F = AB' + B'C' + B'D'

F = AB' + B'C' + B'D'

F = (A'+B'') + (B''+C'') + (B''+D'')

F = (A'+B) + (B+C) + (B+D)

 A

 B

 C

 D

 F

 23

Ex. : Using NAND Gate only and NOR Gate only to simplify the following function:

F=)13,10,9,8,5,2,1,0(

F = y'w' + z'w

Using NAND Gate:

F = y'w' + z'w

 = y'w' . z'w

1 1

1 1 1 1

1 1

 A

 B

 C

 D

 F

 4 12 8 0

xy
00 01 11 10

 1 5 9 13

zw

00

 3

 2

 7

 6

 11 15

14

 01

 11

 10 10

 y

 w

 z

 F

 24

Using NOR Gate:

F = y'w' + z'w

 = (y''+w'') + (z''+w')

 = (y+w) + (z +w')

H.W : Implement the following logic functions using NAND and NOR Gates only:

1. F1 = (A' + B + C).(A + C)

2. F2 =)15,14,13,8,4,2,1,0(

3. F3 =)14,11,10,9,5,4,1(

Logic Circuits

Ex. 1: Design a logic circuit that has two bits binary number, the outputs represent

[3 × input number].

O

a0 a1 F1 F2 F3 F4

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 1 0

1 1 1 0 0 1

 y

 w

 z F

Logic Circuit
 a0

 a1

 a F = 3 × a

 25

F1 = a0a1

F2 = a0a1'

F3 = a0'a1+ a0a1' = a0 a1

F4 = a0'a1 + a0a1 = a1(a0'+ a0) = a1

Ex. 2: Design a logic circuit using minimum numbers of logic gates. The logic

circuit has three inputs and one output, the output is active only if two adjacent

ones appear at the input.

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

F =)7,6,3(

F = AB + BC

 1

 1 1

1

 a0
 F1 a1

 F2

 F3

 F4

 2 6 4 0

AB
00 01 11 10

 1 3 5 7

 C

 0

 1

 26

H.W : Design a logic circuit to produce an output F = 1 if and only if the input

which is represented by 4 – bits binary number greater than (13) and less than (4).

 A

 F

 B

 C

	chapter one
	chapter two
	chapter three

