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Chapter One: Digital Systems and Binary Numbers 

Introduction: 

  A digital system is a combination of devices {mechanical, electrical, photo 

electronic,…,etc.} arranged to perform certain functions in which quantities are 

represented digitally. 

  Digital systems are used in communication, business transactions, traffic control, 

spacecraft guidance, medical treatment, weather monitoring, the Internet, and many 

other commercial, industrial, and scientific enterprises.   
 

Number Systems and Number‐Base Conversions: 
 

1. Decimal Number Systems 

It is said to be of base (10) since it uses 10 digits {0, 1, 2, 3, ……, 9}. 

Ex. 1: [7392]10 = 3210 107103109102  = 7392. 

Ex. 2: [0.421]10 = 3210 101102104100   = 0.421. 
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Where; N is the base of the system. 

 

2. Binary Number Systems 

It is said to be of base (2) since it uses 2 digits {0, 1}. 

 

Binary to Decimal Conversion 

Ex. : [11010.11]2 = 2143210 21212121202120   =(26.75)10. 
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Ex. : [4021.2]5 = 13210 5254505251  =(511.4)10. 

 

Decimal to Binary Conversion 

Ex. 1: Convert the decimal number [41] to binary number 

The arithmetic process can be manipulated more conveniently as follows: 

                Integer                 Remainder 

                  41÷ 2 

                  20 ÷ 2                             1 

                 10  ÷ 2                             0 

                  5   ÷ 2                             0 

                  2   ÷ 2                             1 

                       1                                0 

                                                         1 

 

(101001)2 = answer 

 

So, [41]10    = (101001)2  

 

Ex. 2: Convert the decimal number [27.15] to binary number 

The arithmetic process can be manipulated more conveniently as follows:              

                 Integer                 Remainder 

                  27÷ 2 

                  13 ÷ 2                             1 

                   6  ÷ 2                             1 

                   3  ÷ 2                             0 

                      1                                 1 

                                                         1 

(11011)2 = answer 

[27]10    = (11011)2  

                Fraction                 Coefficient  

               0.15×2= 0.3                      0 

                0.3 × 2=0.6                      0        

                0.6 × 2=1.2                      1 

                1.2 × 2=0.4                      0 

                0.4 × 2=0.8                      0 

                0.8 × 2=1.6                      1    

                1.6 × 2=1.2                      1 
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(0.0010011)2 = answer 

 

[0.15]10    = (0.0010011)2  

 

So, [27.15]10    = (11011.0010011)2  

 

Note: Conversion from decimal integers to any base‐r system is similar to this example, 

except that division is done by r instead of 2. 

 

Ex. : Convert the decimal number [22.5] to 4 base number system 

The arithmetic process can be manipulated more conveniently as follows:      

                 Integer                 Remainder 

                  22÷ 4 

                   5 ÷ 4                            2 

                      1                               1 

                                                       1 

 

(112)4 = answer 

[22]10    = (112)4         

                Fraction                 Coefficient  

                0.5×4= 2.0                       2 

                2.0 × 4=0.0                      0                           

                 

(0.20)4 = answer 

 

[0.5]10    = (0.2)4  

 

So, [22.5]10    = (112.2)4  

 

H.W: Convert the following numbers: 

1. (645.34)10                    ( )2   

2. (153.531)10                  ( )6     

3. (11101.1101)2                 ( )10     
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3.  Octal Number Systems 

It is said to be of base (8) since it uses 8 digits {0, 1, 2,…..,7}. 

Ex. 1: [231]8 = 210 828381  = (153)10. 

Ex. 2: Convert the decimal number [245.5] to  octal  number system 

The arithmetic process can be manipulated more conveniently as follows:       

                 Integer                 Remainder 

                  245÷ 8 

                   30 ÷ 8                          5 

                      3                               6 

                                                       3 

 

(365)8 = answer 

[245]10    = (365)8  

 

                Fraction                 Coefficient  

                0.5×8= 4.0                       4 

                4.0 × 8=0.0                      0        

                 

(0.40)8 = answer 

 

[0.5]10    = (0.4)4  

 

So, [245.5]10    = (365.4)8  

 

4.  Hexadecimal  Number Systems 

It is said to be of base (16) since it uses 16 digits {0, 1, 2,…..,9, A, B, C, D, E, F}. 

Ex. 1 : [2C.4A]16 = 2110 16101641621612   = (44.2)10. 

Ex. 2 : Convert the decimal number [165.25] to  hexadecimal number system 

The arithmetic process can be manipulated more conveniently as follows: 

             

                 Integer                 Remainder 

                  165÷ 16 

                 (10) A                           5 

                                                      A 

(A5)16 = answer 

[165]10    = (A5)16                 
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                  Fraction                 Coefficient  

                0.25×16= 4.0                     4 

                4.0 × 16=0.0                      0        

                 

(0.40)16 = answer 

 

[0.25]10    = (0.4)16  

 

So, [165.25]10    = (A5.4)16  

 

H.W 1: Convert the following numbers: 

1. (33.22)4                       ( )8   

2. (BA.C)16                      ( )7     

 

H.W 2: In base [13], list the numbers between (4 and 40). 

 

Conversion between Binary & Octal systems 
  The conversion between Binary and Octal is accomplished by partitioning the binary 

number into groups of three digits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex. 1: Convert the octal number [63.4] to  binary number system 

(63.4)8    = (110011.100)2 

Ex. 2: Convert the binary number (1011011.11011) to octal system 

(001011011.110110)2    = (133.66)8 

 

Octal Binary 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 
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Conversion between Binary & Hexadecimal systems 

  The conversion between Binary and Hexadecimal is accomplished by partitioning the 

binary number into groups of four digits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex. 1: Convert the Hexadecimal number [F67.19] to  binary number system 

(F67.19)16    = (111101100111.00011001)2 

Ex. 2: Convert the binary number (10100111011.0110101) to hexadecimal system 

(010100111011.01101010)2    = (53B.6A)16 

 

H.W: Convert the following numbers: 

1. (11011.1001)2                  ( )8   

2. (DF3.C5)16                      ( )2     

 

 

Arithmetic operations 
Binary Arithmetic 
1) Addition operation  

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 0; and carry 1 to the next column.  

   Hexadecimal Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E 1110 

F 1111 
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Ex. : Add; (1011.01 + 101.101)2 

1011.010    + 

0101.101 

  

(10000.111)2 

 

2) Subtraction operation  

0 – 0 = 0 

0 – 1 = 1; and barrow 1 from the next column. 

1 – 0 = 1 

1 – 1 = 0  

 

Ex. : Subtract; (1000.01 – 11.001)2 

1000.010     – 

0011.001 

  

(101.001)2 

 

3) Multiplication operation  

0 × 0 = 0 

0 × 1 = 0 

1 × 0 = 0 

1 × 1 = 1  

 

Ex. : Multiply; (11.01 × 1.01)2 

1101          × 

  101 

    1101       +      

  00000 

110100 

(100.0001)2 

 

4) Devision operation  

0 ÷ 0 = undefined 

1 ÷ 0 = undefined 

0 ÷ 1 = 0 

1 ÷ 1 = 1  
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Ex. : Divide; (1101.01 ÷ 10)2 

 

 

 

 

  

 

 

 

 

 

 

 

 

So, 1101.01 ÷ 10 = (110.101)2 

 

R – Base Arithmetic 
Ex.  : Evaluate the following:  

1. (42.51 + 15.3)8   & (42.51 –  15.3)8 

42.51                            42.51   

                 +                                – 

15.30                            15.30 

  

(60.01)8                       (25.21)8 

2. (B3 + 4D)16   & (B3 –  4D)16 

 

B3                            B3   

                 +                                – 

4D                            4D 

  

(100)16                       (66)16 

 

H.W: Perform the following operations 

1. (50.27 )9  ÷ (15.28)9 

2. (44.56)7 + (12.5)6  

3. (B3)13 –  (6.55)13 

4. (33.24 )5  × (14.21)5 

10 110101 

10     - 

110.101 

     10 

     10     - 

    0 10 

       10     - 

    0 10 

       10     - 

00 
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Complements of Numbers 

   In digital systems, the complements are used to simplify the subtraction operation. 

There are two types of complements for r – base system: 

 r 's complement. 

 (r – 1)'s complement.  

In binary system, there are 2's complement and 1's complement which represent the 

negative form of binary number.  

 

1. The first complement (1's) are changed zeros to ones and ones to zeros. 

 

Ex. : (01001.1101)2                          (10110.0010)2           

  

2. The second complement (2's) can be either leaving least significant zeros and 

ones digit unchanged then replacing 1's to 0's and 0's to 1's; or by forming 1's 

complement and adding {1} for the least significant bit. 

 

 

Ex. : (110101)2                          ( )2's           

 

 

(110101)2                          (001010 )1's   + 1= (001011)2's        

 

Subtraction using Complements 

  In digital computer, if the subtraction implemented, we use the complements and 

addition as shown: 
1) Convert the second number using 1's or 2's complement. 

2) Replace the subtraction operation to addition operation. 

 

Ex. 1: Perform the following operation using 2's complement. 

(1010100)2 – (1000100)2 

 

(1000100)2                       (0111011)1's +1 = (0111100)2's 

1010100 

                + 

0111100 

         

1   0010000      ….. (0010000)2 

1's 

2's 

1's 

1's 

Ignored  
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Ex.  2: Perform the following operation using 2's complement. 

(1010011.01)2 – (0101100.10)2 

 

(0101100.10)2                       (1010011.01)1's +1 =(1010011.10)2's 

1010011.01 

                      + 

1010011.10 

         

1   0100110.11      ….. (0100110.11)2 

 

 

Ex.  3: Perform the following operation using 1's complement. 

(1010111)2 – (0110110)2 

 

(0110110)2                       (1001001)1's  

1010111 

                + 

1001001 

         

1 0100000       

             1        + 

(100001)2 

 

Ex.  4: Find the 12's complement and 13's complement to the number [B65.5C]13. 

 

CCC.CC 

                 – 

B65.5C 

    (167.70)12's     + 1 = (167.71)13's 

 

 

 

 

 

 

1's 

Ignored  

1's 
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Binary Logic Gates 

1. AND Gate: 

      A         B         Z 

      0         0         0 

      0         1         0 

      1         0         0 

      1         1         1 

 

 
Z = A . B 

2. OR Gate: 

      A         B         Z 

      0         0         0 

      0         1         1 

      1         0         1 

      1         1         1 

 

 
Z = A + B 

 

3. NOT Gate: 

      x         y 

      0         1 

      1         0 

 

 
y = x  

 

 

AND Gate Truth Table 

OR Gate Truth Table 

NOT Gate Truth Table 
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4. NAND Gate: 

      x         y         Z 

      0         0         1 

      0         1         1 

      1         0         1 

      1         1         0 

 

 
z = x . y 

5. NOR Gate: 

      x         y         z 

      0         0         1 

      0         1         0 

      1         0         0 

      1         1         0 

 

 
z = x + y 

 

6. Exclusive OR (Ex – OR) Gate: 

      x         Y         z 

      0         0         0 

      0         1         1 

      1         0         1 

      1         1         0 

 

 
z = x'y +xy' = x y 

 

NAND Gate Truth Table 

NOR Gate Truth Table 

Ex - OR Gate Truth Table 
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7. Exclusive NOR (Ex – NOR) Gate: 

      A         B         Y 

      0         0         1 

      0         1         0 

      1         0         0 

      1         1         1 

 

 
Y = AB +A'B' = AB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex - NOR Gate Truth Table 
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Chapter TWO: BOOLEAN ALGEBRA  

BASIC DEFINITIONS 

  Boolean algebra, like any other  mathematical system, may be defined with a 

set of elements, a set of operators, and a number of unproved axioms or 

postulates. A set of elements is any collection of objects, usually having a 

common property. If S is a set, and x and y are certain objects, then the notation x 

 S means that x is a member of the set S and y   S means that y is not an 

element of S.  

  A binary operator defined on a set S of elements is a rule that assigns, to each 

pair of elements from S, a unique element from S. As an example, consider the 

relation a *b = c. We say that * is a binary operator if it specifies a rule for 

finding c from the pair (a, b) and also if a, b, c  S. However, * is not a binary 

operator if a, b S, and if c  S. 

  Boolean algebra can be used to help analyze a logic circuit and express its 

operation mathematically. There are four assumptions which are: 

 

1. 0.0 = 0 

    0.1 = 0 

    1.0 = 0 

    1.1 = 1  

2. 0+0 = 0 

    0+1 = 1 

    1+0 = 1 

    1+1 = 1   

3. 0' = 1 

    1' = 0 

4. If x = 1 then x ≠ 0 

    If x = 0 then x ≠ 1  

 

Rules of Boolean Algebra 

The basic thermoses and laws of Boolean Algebra: 

1) Commutative Law  

A . B = B .A 

A + B = B +A 

2) Associative Law  

A . (B . C) = (A . B) . C 
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A + (B + C) = (A + B) + C 

3) Distribution Law  

A . (B + C) = (A . B) + (A . C) 

A + (B . C) = (A + B) . (A + C) 

4) A + 0 = A  

    A + 1 = 1 

    A . 0 = 0 

    A . 1 = A 

5) A + A = A  

    A + A' = 1 

    A . A = A 

    A . A' = 0 

6) Inversion Law  

A'' = A 

7) A + (A . B) = A  

 Proof :A (1+ B) = A . 1 = A  

 

A + (A' . B) = A  + B  

 Proof : (A+ A') . (A + B) = A + B  

 

8) DE Morgan's Theorem 

A)  A . B = A' + B' 

Proof :     

A B A . B (A . B)' 

0 0 0 1 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 

 

 

 

 

 

 A . B . C . D . ….   = A' + B' + C' + D' + ……. 

 

 

A B A' B' A'+B' 

0 0 1 1 1 

0 1 1 0 1 

1 0 0 1 1 

1 1 0 0 0 

1 

1 

In General 
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B)  A + B = A' . B' 

Proof :     

A B A + B (A + B)' 

0 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 1 0 

 

 

 

 

 

 

 A + B + C + D . ….   = A' . B' . C' . D' . ……. 

 

Ex. : Prove that: 

1. a'b + b'c + ac' = ab' + bc' + a'c 

The left side: 

= a'b(c + c') + (a + a')b'c + a(b + b')c' 

= a'bc +a'bc' + ab'c + a'b'c + abc' + ab'c' 

= ab'(c + c') + bc' (a + a') + a'c (b + b') 

 

 

= ab' + bc' + a'c = The right side. 

 

2. (x y)  z = x  (y  z) 

The left side: 

= (xy' + x'y)z' + (xy' + x'y)'z 

= xy'z' +x'yz' + ((x' + y).(x + y'))z 

= xy'z' + x'yz' + (xx' + x'y' + xy + yy')z 

 

= xy'z '+ x'yz' + x'y' z + xyz 

= x(y'z' +yz) + x'(yz' +y'z) 

= x (y  z)' + x' (y  z) 

= x  (y  z) = The right side. 

 

 

A B A' B' A'.B' 

0 0 1 1 1 

0 1 1 0 0 

1 0 0 1 0 

1 1 0 0 0 

In General 

1 1 1 

0 

0 
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H.W 1: Simplify the following functions: 

1. F1  = AB'C + BC'D + ACD + BCD 

2. F2 = y + x'y'z + xzw' + xz' 

 

H.W 2: Prove that: 

 ABC' + A'BC + ABC = B (A + C). 

 

Canonical and Standard Forms 

  The logic function can be expressed by two standard form: 

1. Sum of Products (SoP) : It is possible to implement the logic functions in 

sum of products method depending on the output, it the output equals logic 1. 

F = 1.  

2. Product of Sums (PoS): It is possible to implement the logic functions in 

product of sums method depending on the output, it the output equals logic 0. 

F = 0.  

 

Ex. 1: Find the canonical forms in SoP and PoS for the following function: 

F(x,y,z) = xy + x'y' + z' 

= xy(z + z')  + x'y'(z + z') + (x + x')(y + y')z' 

= xyz + xyz' + x'y'z + x'y'z' + (xy + xy' + x'y + x'y')z' 

= xyz + xyz' + x'y'z + x'y'z' + xyz' + xy'z' + x'yz' 

= xyz + xyz' + x'y'z + x'y'z'  + xy'z' + x'yz' 

F (SoP) =  )7,6,4,2,1,0(  

F (PoS) =  )5,3(  

 

Ex. 2: Find the canonical forms in SoP and PoS for the following function: 

F = (A + B')(A + B + C') 

= (A + B' + CC')(A + B + C')  

= (A + B' + C)(A + B' + C')(A + B + C')  

F (PoS) =  )3,2,1(  

F (SoP) =  )7,6,5,4,0(  

 

H.W : Convert the following logic function to SoP & PoS: 

1. F = (x + y'z'w')(x'y' + y (z' + w)) 

 

2. F = (A + B)'AB 
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Chapter Three: gate Level minimization  

The Karnough Map Method 

  Karnough Map ( K – M) is used to simplify the logic functions to reduce the Boolean 

functions with the aid of number of rules.  Karnough Maps consist of 2
n
 cell depending 

on the (n) variables of the logic functions. 

 

1) 2 – variables  Karnough Map: 

n = 2                        no. of cells = 2
n
 = 2

2 
= 4 

For  F(A, B)  

 

 

  

  

 

Or                               

Ex. : Using K – M  to simplify the function : 

F =  )3,1(  

 

 

  

  

 

F =  A 

2) 3 – variables  Karnough Map: 

n = 3                        no. of cells = 2
n
 = 2

3 
= 8 

 

For  F(A, B, C)  

 

 

 

 

 

 

    

    

    

A 

B 

0 1 

3 2 

 0  1 

0 

1 
AB  

00  01  

   1  

 10  

   2     3  

 11  

  0  

A 

B 

0 1 

3 2 

 0  1 

0 

1  1  

 1  

  2     6     4    0  

AB  
00  01   11   10  

  1    3     5    7  

 C  

 0  

 1  
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Or                               

 

 

  

  

 

 

 

  

 

Ex. : Using K – M  to simplify the function : 

F =  )6,4,1;0(  

 

 

 

 

 

 

F =  (A + B)(A' + C) 

 

3) 4 – variables  Karnough Map: 

n = 4                        no. of cells = 2
n
 = 2

4 
= 16 

 

For  F(A, B, C, D)  

 

 

 

 

 

 

 

Ex. : Using K – M  to simplify the function : 

F =  )15,13,10,8,7,5,2,0(  

 

 

    

    

    

    

    

    

A 

B 

0 4 

5 1 

 0  1 

00 

01 

     11 
 3  

     10 
   2 

  7 

   6 

  2     6     4    0  

AB  
00  01   11   10  

  1    3     5    7  

 C  

 0  

 1  

  0  

  0  

  0    0  

  4      12     8    0  

AB  
00  01   11   10  

  1    5     9  13   

CD  

00   

 01  

 11  

 10  

  3 

  2 

   7  

   6  

   11  

   10  

15   

14   
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F =  B'D' + BD = (B   D)' 

 

4) 5 – variables  Karnough Map: 

n = 5                        no. of cells = 2
n
 = 2

5 
= 32 

 

For  F(A, B, C, D, E)  

 

 

 

 

 

 

 

 

 

 

 

 

Ex. : Using K – M  to simplify the function : 

F =  )31,30,29,25,23,22,17,15,14,13,9,7,6,2,1(  

 

 

 

 

 

 

 

 

 

 

    

    

    

    

    

    

    

    

    

    

    

    

    

1    

1 1 1 1 

    

1 1 1 1 

    

1 1 1 1 

 1 1  

  4      12     8    0  

AB  
00  01   11   10  

  1    5     9  13   

CD  

00   

 01  

 11  

 10  

  3 

  2 

   7  

   6  

   11  

   10  

15   

14   

1  

1  

1  

1  

1  

1  

1  1  

  8    24      16    0  

AB  
00  01   11   10  

  2  10 

10   

 18 

18

26   

CD  

00   

 01  

 11  

 10  

  6 

  4 

 14 

14  12  

   22  

   20  

30   

28   

  9      25    17    1  

AB  
00  01   11   10  

  3  19  27   

CD  

00   

 01  

 11  

 10  

 7 

  5 

   15 

13     

  23  

   21  

31   

29   

E' 

E 

   11 

  8    24      16    0  

AB  00  01   11   10  

  2  10 

10   

 18 

18

26   

CD  

00   

 01 

  11  

 10  

  6 

  4 

 14 

14  12  

   22  

   20  

30   

28   

  9      25    17    1  

AB  00  01   11   10  

  3  19  27   

CD  

00   

 01  

 11  

 10  

 7 

  5 13     

  23  

   21  

31   

29   

E' 

E 

   11 
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F =  CD + C'D'E + BCE + A'B'DE' 

 

H.W : Simplify the following logic functions using K - Maps: 

1. F = A'B'C +ABC'D' + AD' + C 

 

2. F =  )14,10,8,5,2,1(  

Don’t‐Care Terms 

   The don't care terms will referred to the combination of variables will never occur. The 

don't care terms can be expressed by many symbols such as [ᶲ, X, D]. When the don't 

care terms are appeared in the karnough maps, the resulting expression will be 

simplified. 

 

Ex. 1: Simplify the following expression: 

F = A'B'C' +A'B'CD' + AB'D +   )''( DABABC  

= A'B'C'(D + D') +A'B'CD' + AB'(C + C')D +   )')'(')'(( DCCABDDABC  

 = A'B'C'D + A'B'C'D' +A'B'CD' + AB'CD + AB'C'D + 

  )''''''( DCABCDABABCDABCD  

F=     )15,14,10,8()11,9,2,1,0(   

 

 

 

 

 

 

 

F = AB' + B'D' + A'B'C'  

 

Ex. 2: Simplify the following function: 

F=     )15,14,13,12,11,10()9,8,7,6,5(   

F = A + BC + BD 

 

 

 

 

 

 

1   X 

1   1 

   1 

1   X 

  X 1 

 1 X 1 

 1 X X 

 1 X X 

  4      12     8    0  

AB  
00  01   11   10  

  1    5     9  13   

CD  

00   

  3 

  2 

   7  

   6  

   11  15   

14   

 01   

 11   

 10   

  4      12     8    0  

AB  
00  01   11   10  

  1    5     9  13   

CD  

00   

  3 

  2 

   7  

   6  

   11  15   

14   

 01   

 11   

 10      10  

   10  
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H.W : Simplify the following logic functions: 

1. F1 = x'y'z' +x'y'z' + xy'z'w + D(x'yzw' + xyw') 

 

2. F2 =   )15,7,2,0()14,11,10,9,5,4,1( D  

 

 

NAND and NOR Implementation  

  NAND Gate and NOR Gate only can be used to implement the Boolean functions: 

1) NAND Gate only: 

Ex. : Simplify the following function using NAND Gate only: 

F = AB' + B'C' + B'D' 

 

F = AB' + B'C' + B'D' 

 

F = (AB') . (B'C') . B'D' 

 

                                            

                                              

 

                                            

                                              

 

                                            

                                              

 

2) N0R Gate only: 

Ex. : Simplify the following function using NOR Gate only: 

F = AB' + B'C' + B'D' 

 

F = AB' + B'C' + B'D' 

 

F = (A'+B'') +  (B''+C'') + (B''+D'') 

 

F = (A'+B) +  (B+C) + (B+D) 

 

 

 

 A  

 B  

 C   

 D    

 F     
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Ex. : Using NAND Gate only and NOR Gate only to simplify the following function: 

F=    )13,10,9,8,5,2,1,0(  

 

 

 

 

 

 

 

F = y'w' + z'w   

Using NAND Gate: 

 

F = y'w' + z'w   

 

   = y'w' . z'w   

 

                                            

                                              

 

                                            

                                              

 

                                            

 

 

 

1   1 

1 1 1 1 

    

1   1 

  A  

 B  

 C   

 D    

 F     

  4      12     8    0  

xy  
00  01   11   10  

  1    5     9  13   

zw  

00   

  3 

  2 

   7  

   6  

   11  15   

14   

 01   

 11   

 10      10  

 y  

 w   

 z    

 F     
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Using NOR Gate: 

 

F = y'w' + z'w   

 

   = (y''+w'')  + (z''+w')   

 

   = (y+w)  + (z +w')   

                                            

                                              

 

                                            

                                              

 

                                            

 

 

H.W : Implement the following logic functions using NAND and NOR Gates only: 

1. F1 = (A' + B + C).(A + C) 

2. F2 =  )15,14,13,8,4,2,1,0(
 

3. F3 =  )14,11,10,9,5,4,1(  

 

Logic Circuits 

Ex. 1: Design a logic circuit that has two bits binary number, the outputs represent   

[ 3 × input number]. 

 

 

                                                                                                                                                   

O                                                                                                                           

 

 

a0 a1 F1 F2 F3 F4 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 0 1 1 0 

1 1 1 0 0 1 

 

 

 y  

 w   

 z     F     

Logic Circuit  
    a0 

    a1 

     a     F = 3 × a 
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F1 = a0a1 

F2 = a0a1' 

F3 = a0'a1+ a0a1' = a0   a1 

F4 = a0'a1 + a0a1 = a1(a0'+ a0) = a1 

 

                                              

 

                                            

                                              

 

                                            

 

 

 

 

Ex. 2: Design a logic circuit using minimum numbers of logic gates. The logic 

circuit has three inputs and one output, the output is active only if two adjacent 

ones appear at the input.   

  

A B C F 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

F =  )7,6,3(  

 

 

 

 

 

 

 

F = AB + BC 

 

  1  

 1 1  

1 

  a0   
 F1      a1   

 F2    

  F3    

  F4    

  2     6     4    0  

AB  
00  01   11   10  

  1    3     5    7  

 C  

 0  

 1  
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H.W : Design a logic circuit to produce an output F = 1 if and only if the input 

which is represented by 4 – bits binary number greater than (13) and less than (4). 

 

 

  A  

 F    

  B   

 C    
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